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A B S T R A C T

Bayesian inference is crucial for optimizing parameters in complex models, but often requires sampling
due to high-dimensional, intractable posteriors. Beyond Markov-Chain Monte Carlo (MCMC) methods,
Sequential Monte Carlo (SMC) algorithms offer an alternative. This paper introduces a Matlab toolbox for the
Particle Evolution Metropolis Sequential Monte Carlo (PEM-SMC) algorithm, which combines the strengths of
population-based MCMC and SMC. Two case studies – a complex multi-modal probability and a land surface
model – demonstrate the toolbox’s capabilities. This tool is valuable for Bayesian inference across fields like
statistics, ecology, hydrology, and land surface processes.
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1. Introduction

A model is a simplified representation of reality with a set of
unknown parameters. Based on Bayes’ Theorem, Bayesian inference
mathematically transforms prior probabilities into posterior distribu-
tion by considering the likelihood of the observed data, which offers
powerful tool for integrating diverse data and managing uncertainties
[1]. However, the equation for the posterior distribution is often
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complex, making direct sampling of parameters challenging [2]. Typ-
ically, these issues can be addressed using Markov chain Monte Carlo
(MCMC) methods, with the Metropolis–Hastings algorithm being stan-
dard for generating parameter sequences [3]. To generate the candidate
efficiently, many efforts have been devoted to designing the transi-
tion kernel, using either single or multiple chains running in parallel.
However, MCMC does not reliably ensure that the sampling process
converges to the target distribution.
https://doi.org/10.1016/j.simpa.2024.100728
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Table 1
Comprehensive comparison of MCMC, SMC, and PEM-SMC.

MCMC SMC PEM-SMC References

Commonality Using random sampling to approximate high-dimensional complex target distributions Andrieu et al. [7];
Core idea Iterative: Constructing a Markov

chain to reach the stationary
target distribution

Recursive: Updates particles with
reweighting and resampling

Recursive: Updates particles with
reweighting, resampling and
mutation

Chopin [8];
Crisan and Doucet [9];

Sampling strategy Accept-Reject: Relies on transition
rules to accept or reject samples.
(e.g., Metropolis–Hastings, Gibbs
sampling)

Importance sampling: Uses
importance weights to update and
resample particles.

Hybrid sampling: Generates new
particles under the SMC
framework combined with an
MCMC kernel

De Freitas [10];

Convergence Slower: Chains converge slowly
and require careful tuning

Faster: Resampling helps maintain
convergence

Faster: Similar to SMC Del Moral et al. [11];

Maintaining Diversity Harder: Samples may become
correlated, reducing diversity;
using multiple chains help
mitigate this issue

Easier: Resampling preserves
diversity but risks degeneration.

Easier: Mutation operators
prevent particle degeneration and
preserve diversity

Hastings [3];

Applicability Static: Well-suited for static,
unimodal distributions but
adaptable to more complex
scenarios with advanced methods

Dynamic: Excels in dynamic
systems or time-varying
distributions (e.g., filtering
problems)

Static: Ideal for resource-intensive
models with multimodal
distributions, high-dimensional
static parameters

Kitagawa [12];
Metropolis et al. [13];

Parallelism Harder: Stepwise dependency in
Markov chain limits parallelism

Easier: Each particle’s
computation is independent

Easier: Similar to SMC and easily
to achieve parallelism

Speich et al. [6];
Ter Braak and Vrugt [14];

Computation Efficiency High efficient:Due to fewer chains
but involves longer steps per
chain

Efficient: Requires many particles
and evolution steps, but
parallelizability can reduce
computational costs

Efficient: Similar to SMC Vrugt et al. [15];
Zhu et al. [5]

Sequential Monte Carlo (SMC) methods offer an alternative, pro-
ressing parameters through a series of distributions from prior to
osterior [4]. This method effectively explores multimodal distributions
nd represents the posterior using a particle set without relying on
arkov properties. However, MCMC and SMC both have limitations,

such as convergence issues and particle degeneracy, respectively. The
uture of Bayesian inference seems to be moving towards hybrid ap-

proaches that combine the strengths of MCMC and SMC with more
modern computational techniques. In light of this, we developed the
article Evolution Metropolis Sequential Monte Carlo (PEM-SMC) al-
orithm, combining both methods’ strengths to enhance diversity and
fficiency through iterative MCMC updates, proving superior to tradi-
ional approaches [5]. Table 1 compares MCMC, SMC, and PEM-SMC

algorithm across key dimensions, including core ideas, sampling strate-
gies, algorithm efficiency, and applicability. Recently, Speich et al.
[6] reported that PEM-SMC outperform the state-of-the-art MCMC al-
orithms. Despite its advantages, PEM-SMC is not widely recognized.
e introduce a MATLAB toolbox to facilitate its application, aiming

o make this robust method accessible, detailed in this paper through
arious case studies.

2. A primer to PEM-SMC

The PEM-SMC algorithm iteratively evolves particles through a
sequence of intermediate distributions, employing weighting, resam-
pling, and moving steps (Fig. 1). In the weighting step, each particle
receives a weight proportional to its density in the current distribu-
tion. Traditionally, resampling in SMC algorithms occurs only when
the effective sample size falls below a specific threshold. However,

e propose resampling at every iteration, regardless of sample size.
his approach, while computationally demanding, offers two main
dvantages: it enhances the explorative capabilities of the particles,
reventing degeneracy, and simplifies Monte Carlo estimates by equal-
zing particle weights post-resampling. We use a systematic resampling

scheme in this study, though other methods like stratified, residual, and
ultinomial resampling can also be integrated into the algorithm.

3. Matlab toolbox of PEM-SMC

The PEM-SMC algorithm is implemented with Matlab version 2018a
(or higher), and the source code is stored in GitHub repository. The

PEM-SMC code can be executed from the Matlab prompt by the com-
mand:

[par amet er_it er at ion] = PEM_sampler (Np,S, bound)
where Np is the number of particles in population; S is the number
of maximum iteration; bound is a 2×d matrix that contains the lower
and upper bound values of the d-dimensional parameters; parame-
ter_iteration is a Np×d×S output matrix that contains the parameter
values of each particle during the whole iterations. PEM_sampler uses
five main functions to implement its various functionalities and gener-
ate samples from the desired distributions. Among them, the content of
the target function needs to be written by the user and the call to this
function is:
L = t ar get (x)
where 𝑥 is a 1× d parameter vector, and L is the returned log-density
value of inputted parameters. The workflow of applying the PEM-SMC
is presented in Fig. 2.

4. Numerical examples

4.1. Case study 1: a two-dimensional probability distribution with 20 modes

The first case study involves a two-dimensional normal mixture
distribution taken from Liang and Wong [16]:

𝑝(𝑥) =
20
∑

𝑖=1

𝜔𝑖
2𝜋 𝜎𝑖

exp{− 1
2𝜎2𝑖

(𝐗 − 𝝁𝑖)′(𝐗 − 𝝁𝑖)} (1)

where 𝜎1 = 𝜎2 = . . . = 𝜎20 = 0.1; 𝜔1 = 𝜔2=. . .=𝜔20 = 0.05. Since
most local modes are more than 15 standard deviations away from
the nearest ones, this mixture distribution poses a serious challenge for
sampling algorithms, and thus serves as a good test. We applied the
PEM-SMC sampler to this problem, with set Np = 3000, S = 800, and
bound=[−1, −1; 10, 10]. The target function for the case 1 can be found
details in the repository of PEM-SMC in GitHub.

Fig. 3a showed that all the modes of the target distribution were
successfully visited by the particles generated by the PEM-SMC sampler
in the last iteration (S = 800). Fig. 3b shows the sample path of the
last 400 iterations of a selected particle, which visited all the 20 modes
frequently. Thus, it is evident that the PEM-SMC sampler has excellent
global exploration ability.
2
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Fig. 1. The basic sampling scheme of the PEM-SMC algorithm. In the moving step of SMC (left panel), the rand walk, crossover and mutation operators are employed to increase
the diversities of particles (right panel).

Fig. 2. Inputs and outputs of the PEM-SMC algorithm, and modules contained in the algorithm. Only three input variables (Np, S, bound) and the target function are needed to
e defined by users when applying the algorithm.

4.2. Case study 2: land surface model

The second case study explores the use of the PEM-SMC algorithm
or parameter optimization in complex land surface models (LSMs),

which are typically written in Fortran, C, or C++ rather than Matlab.
This necessitates additional compiling steps when integrating the PEM-
SMC algorithm with LSMs. We demonstrate this process using the Com-
mon Land Model (CoLM), a Fortran-based model extensively applied in
simulating interactions between the land surface and atmosphere [17].

After generating the executable file (.exe), users can directly apply
he PEM-SMC algorithm for LSM optimization. In this study, we used

the latent heat flux (LE) observations in an evergreen needleleaf forest
station (RU-FY2) from Fluxnet (https://fluxnet.org) to optimize the
parameters of CoLM. Six parameters (vmax25, 𝛼, m, 𝜓_d, B_d, N) were
selected by using the global sensitivity analyses. Users needed to define
the Np, S, and bound, but to save computing time, Np and S were sig-
nificantly reduced compared to previous cases. In the target function,
the executable ‘‘run.exe’’ of CoLM simulated LE using parameters from
input_step.txt, and the log-likelihood was calculated from the simulated
results (model_data) and observations.

The particle evolutions of the six parameters were shown in Fig. 4.
We can observe that all particles converged after 50 iterations, and the
3
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Fig. 3. (a) Samples generated from the last iteration of the PEM-SMC sampler. The actual values of local modes are represented by red cross (‘×’), and the individual particles
obtained by PEM-SMC sampler in the last iteration is coded with blue dot (‘.’); (b) The sample path of the last 400 iterations of the selected particle generated by the PEM-SMC
ampler.

Fig. 4. Transitions of the sampled parameter values of (a) vmax25, (b) 𝛼, (c) m, (d) 𝛹d, (e) Bd, and (f) N. The cross symbol at the right-hand side of each plot indicates the
actual (default) parameter values and the solid circles are the median value of the posterior distribution of the parameters. The five randomly selected particles are coded with
different symbols and colors.

median values of the posterior parameter distributions match well with
he true values. Therefore, we believe that the PEM-SMC algorithm is

an effective tool in optimizing parameters of complex LSMs.

5. Impact overview

The PEM-SMC leverages a trio of transition operators (random walk,
rossover, mutation) during the moving step to enhance the generation

of new candidate particles, thereby boosting sampling efficiency. This
approach, while computationally demanding, is particularly effective
for complex models such as CoLM. Recent study [18] has tested the
exclusive use of the mutation operator in the moving step, achieving
over a 40% reduction in runtime without substantially compromising

particle diversity. The mutation operator alone proves adequate for
calibrating process-based models typically characterized by unimodal
posterior distributions. However, for models exhibiting multimodal
distributions or high sensitivity to parameter changes, the combined
use of all three operators (random walk, crossover, mutation) is more
advantageous. Specifically, the crossover operator facilitates particle
escape from local optima, and the random walk operator is crucial for
precise adjustments near optimal parameter values.

The implications of this algorithm extend beyond its immediate
application, as demonstrated by case studies using our Matlab tool-
box. This toolbox addresses posterior sampling challenges in diverse
fields such as statistics, ecology, hydrology, and land surface modeling,
4
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showcasing its broad impact and utility in scientific research and model
calibration.

6. Limitations and future work

A key challenge in employing the PEM-SMC algorithm is determin-
ing the optimal number of particles (Np) and the maximum number of
terations (S) to effectively transition from the initial to the final poste-

rior distribution. These parameters affect the transition from initial to
final posterior distributions, with a trade-off between stability and com-
putational efficiency. A small S may cause particle degeneracy, while a
large S results in unnecessary computations. Dynamic adjustment of S
has been suggested to improve this balance.

Theoretically, Np should increase exponentially with the dimension
f the model parameters (d). However, high Np values greatly increase
omputational time with little impact on accuracy. Practically, starting

Np at 20 times d helps narrow the prior distribution, with adjustments
to several hundreds or thousands over an appropriate prior interval to
obtain precious posterior quantities of interest based on Monte Carlo
stimate. These strategies aim to optimize computational demands and
nference accuracy. Future work will explore dynamic adjustments of
hese parameters to further improve the computational efficiency of the
EM-SMC algorithm.
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